ページ番号,例○などは本「有限要素法で学ぶ現象と数理」での場所を示しますが, *印が付いたマニュアルでの位置を示します.
all.edp 全てを実行

基本問題

exception.edp 例外機構(例外が起きたとき別処理)
FEComplex.edp 複素関数
array.edp 各種配列の使用例
a_tutorial.edp 例1    BEM.edp 境界要素法との連成問題    calculus.edp 各種計算
string.edp 文字列処理の例    func.edp 命令funcの使用例    gnuplot.edp GnuPlot使用例    dumptable.edp ファイル一覧を生成(外部命令ls使用)
medit.edp medit(2.6.5)を外部命令で呼び出す
sparse-cmatrix.edp 疎複素行列のテスト    sparse-matrix.edp 疎行列のテスト
region.edp 分割された領域で異なる係数を持つ偏微分方程式    thermic-fast.edp 熱方程式

メッシュ分割とその情報

FE.edp メッシュ各種情報(表A.9)    glumesh.edp メッシュの張り合せ
mesh.edp 様々なメッシュを生成する例    movemesh.edp 移動メッシュの使用例(p.122) sphere.edp 球の4面体分割    tablefunction.edp 節点表から三角形分割を生成    uniformmesh.edp メッシュ分割を一様に(adaptmesh)
plot.edp HSV色空間を描く    readmesh.edp メッシュ読み込みreadmeshの使用例

ポアソン方程式

LapDG2.edp 不連続2次要素    Laplace-lagrange-mult.edp Neumann条件
Laplace.edp 例2    LaplaceP1.edp 式(2.7)κ=1,α=1
LaplaceP1bis.edp 異なる数値計算法    LaplaceP1P2h.edp P1要素P2要素で解く
LaplaceRT.edp Raviart-Thomas要素を使う    VI.edp 障害問題におけるPrimal-Dual Active set法    VI-adap.edp アダプティブメッシュ使用

L字領域ポアソン問題(アダプティブメッシュ)

adapt.edp Neumann境界条件
メッシュ毎の誤差を調べる: adaptindicatorP1.edp P1誤差指標関数    adaptindicatorP2.edp P2誤差指標関数    AdaptResidualErrorIndicator.edp
algo.edp 汎関数を与える非線形問題    

固体問題

beam.edp 片持ち梁(例34,異なる負荷)    nl-elast-neo-Hookean.edp ゴム膜などネオフック則を満たす非線形弾性
nolinear-elas.edp 大変形・非線形弾性

移流拡散(例38)

convect-apt.edp  convect.edp     convect2.edp

流体問題

正方形キャビティ流れ: 例39の時間発展(Navier-Stokes) cavity.edp     cavityNewtow.edp Newton法    StokesUzawa.edp Uzawa法(6.3.1(2))による流体解析
NSUzawaCahouetChabart.edp Cahouet-Chabart前処理を使うUzawa法(6.3.1(2))による流体解析

流体と固体の連成問題

蓋(弾性体)をした水槽(流体)との錬成問題 fluidStruct.edp
fluidStructAdapt.edp アダプティブメッシュ使用

自由境界問題

freeboundary-weak.edp     freeboundary.edp     mat_interpol.edp 異なるメッシュで定義された要素空間を繋ぐ補間行列
Newton.edp 非線形問題をNewton法で解く例    onde.edp     

周期境界条件

Periodic.edp 周期境界条件でのポアソン方程式    periodic4.edp ダイヤ形領域での周期境界条件
periodic4bis.edp 複雑領域での周期境界条件

領域分割法

schwarz-gc.edp Schwarz領域分割法(Neumann→Dirichlet)
schwarz-no-overlap.edp 例25    schwarz-overlap.edp 例24
shur-comp.edp Schur complement領域分割法    mortar-DN-4.edp Dirichlet-Neumannでmortar法を使った領域分割法

サンプル集

分類なし マニュアルにある基本的なサンプル.
3d 3次元問題のサンプル.
chapt3 O.Pironneau教授によるサンプル.その内容は Introduction to Scientific Computingにある第3章をFreeFem++に書き直したものを中心に,適宜追加した内容となっている.
eigen 固有値問題のサンプル.
mpi MPIによる並列計算例.
other examples++-other に格納されているサンプルコード.
tutorial マニュアルに掲載されたプログラム例が中心になっている.
load FreeFem++の本体に無い機能を追加するためのサンプル.
なお,本書でFreeFem++のサンプルを引用する場合は tutorial/a_tutorial.edp のように記述する.